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I. INTRODUCTION 

In developing a quantitative understanding of physiological reflex 

arcs and some biological control systems, two characteristics consistently 

contribute to the difficulty of mathematical formulation and analysis. 

One problem is the nonlinear elements which are always present and the 

other is the manner in which signals are transmitted, along neural path­

ways, from one physiological unit to another. It has been well accepted 

that the information transfer is accomplished by a distribution of im­

pulses in time, or pulse frequency modulation (l8). The difficulties 

arise, mainly, in formulating the mathematical description of systems of 

this type, i.e., systems containing both nonlinearities and transmitting 

information from one functional unit to the other by pulse frequency mod­

ulation. This is the problem considered in this thesis and a relatively 

new control theory method has been used in order to evaluate the" advan­

tages and disadvantages in using this method when analyzing a problem of 

the type just described. 

Mathematical descriptions of nonlinear systems usually consist of 

linearized approximations for the nonlinearities and this technique often 

limits the range and flexibility of the variables studied (3̂ ). The 

state variable formulation, introduced in the last few years, has become 

an important tool in the analysis of nonlinear as well as linear control 

systems. The state variable formulation does not necessarily eliminate 

all of the difficulties of nonlinear problems, but it does provide a 

systematic approach for the analysis of such problems. 

Since the systems to be studied deal with a form of pulse frequency 

modulation, it was hoped that some literature would be available on this 
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subject. A theoretical analysis of pulse frequency modulation was written 

by Ross (28) in 19̂ 9? and he derives limits on certain variables in order 

to be assured that the pulse frequency is periodic after modulation. This 

is a rather restricted case in as far as biological systems are concerned. 

A general treatment of sampled-data systems, of which this topic is a 

special case, has been discussed by Hufnagel (17). He presents methods 

for analyzing aperiodically-sampled-data systems. Many of these methods 

are linearized approximations for the physical system discussed. Work 

reported in the biological area has been done by Jones, et (18) and 

Rashevsky (27). Although other material has been written, these seem to 

be the most significant contributions to this field of study. Even though 

these people have worked on this topic and arrived at different methods 

of analysis, it seems that there is more to be done both experimentally 

and theoretically. 

Many biological control systems have been analyzed by conventional 

control system techniques and an excellent literature survey of biocontrol 

systems analysis has been presented by Jury and Pavlidis (19). It is felt 

that the pulse frequency information and nonlinearities of these systems 

can be advantageously incorporated in the state variable formulation of 

these problems (ll). By using this formulation, and the definition of 

instantaneous pulse frequency by Jones, et â . (18), information can be 

injected into a control system with no approximations or linearizations 

associated with it. It is believed that by analyzing a specific system 

with this technique, helpful conclusions may be drawn as to its useful­

ness in biological control system research. Therefore, this thesis uses 

the state variable formulation in an analysis of the control system which 
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regulates heart rate, and from this analysis an evaluation of the use of 

the state variable formulation in biological systems is made. 

For those not familiar with state variable theory, a short introduc­

tion is contained in the second chapter. This treatment will give suf­

ficient background for the analysis of the remainder of the thesis. 

The specific problem of controlling heart rate by vagal stimulation 

of the pacemaker is considered and Liapunov's Second Method used to obtain 

conditions for stability of the concentration of acetylcholine at the 

pacemaker site or sinoatrial node. This concentration is related to the 

period of heart rate and experiments are conducted to substantiate theo­

retical predictions. 

State variable theory is used to simulate the carotid sinus heart 

rate reflex and experimental results are compared to calculated results. 

This is done in order to evaluate the injection of pulse frequency informa­

tion into the state variable simulation. 

In order to illustrate the use of state variables in a closed loop 

system., a model of the carotid sinus heart rate control loop is postulated, 

and the state variable equations are found. This model is not analyzed 

due to lack of knowledge of the influences affecting cardiac muscle. 

In conclusion, the advantages and disadvantages of the state variable 

formulation are discussed. Following this discussion, a number of pos­

sible extensions of the work are pointed out and explained briefly. 
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II. STATE VARIABLE THEORY 

A. Introduction 

Since this report may be of interest not only to those familiar with 

state variable theory but also to people whose technical experience is not 

closely connected with control system analysis, an introductory treatment 

of state variable theory is included. The chapter will deal with the 

definitions and manipulations necessary to follow the subsequent applica­

tion of this theory. This will not be a complete treatment of the theory. 

The interested reader is referred to L. A. Zadeh and C. A. Desoer's (4o) 

book of adapting the formulation to digital computer manipulations is pre­

sented. 

B. Theory 

The key observation which explains the use and mechanics of state 

variable theory is that the response of a system may be specified in 

terms of its initial conditions at any instant of time and its inputs from 

that time on. The n initial conditions, or numbers are called state 

variables. The state variables used for a specific problem are not unique 

and may be chosen in many different ways. Information known about the 

system and experience in handling the resulting equations usually dictate 

the choice of state variables (ll). 

Linear systems may be represented by the following system of equa­

tions : 
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dx. n IÏ1 
^ = S a X + S b r , (i = 1,2,3,. . ., n), m < n, (2.l) 

d o  . J  - i — 1  J  J  J-l tJ--L 

y. = E c X , (i = 1,2,3, . . ., r), r <n, (2.2) 
j=l 

where a.., b... and c.. are constants, the r.*s are inputs, the x.'s are 
ID iJ ij 3 ' J 

state variables, and the ŷ 's are outputs. In matrix notation 

X = A X + B R ,  ( 2 . 3 )  

Y = Ç X, (2.4) 

where X is a column matrix, and X is a column matrix whose elements are 

the derivatives of the state variables, x̂ , x̂ , etc. A is an n x n matrix 

whose elements are the coefficients a... B is an n x m matrix whose ele-
ij 

ments are the coefficients b.and C is an r x n matrix whose elements 
ij -

are c_. Y is a column matrix of outputs, ŷ , ŷ , etc., and R is a matrix 

of inputs, r̂ , r̂ , etc. For a time-varying, nonlinear system, the equa­

tions would be 

dx. n m 

ŷ  = 2 îĵ î'̂ 2' -"')%n)t)Xj (2.6) 
j=l 

and in matrix notation 



www.manaraa.com

6 

X = A(f(x),t) X + B (g(x),t) R (2.7) 

Y = C(li(x),t) X, (2.8) 

where the functions f(X), g(x), and h(X) are scalar, algebraic expressions 

composed of the scalar elements of the column matrix X. 

If the Laplace transform of Equation 2.3 is taken, the result is: 

s X(s) - X(0'̂ ) = A X(s) + B R(s), (2.9) 

where, s = Laplace transform variable, X(s) = column matrix whose elements 

are the Laplace transforms of the state variables, R(S) = column matrix 

whose elements are the Laplace transforms of the inputs. Rearranging, 

and performing matrix algebra, 

X(S) = [si - A]"^ X(O'^) + [si - A]"^ B R(S),* (2.10) 

Where I is the unit matrix. Taking the inverse Laplace transform 

"1 "1 —1 
X(t) = / {[Sl-A] }x(o'') + [ / ([Sl-A] ] B R(t-T)dT. 

0 (2.11) 

Substituting 

-1 _ -1 

(̂t) =  ̂[[si - A] ] (2.12) 

gives 

X(t) = ̂ (t) X(O'^) + J ^ (T) B R(t - T) DT. (2.13) 

-"1 
[si - A] denotes the inverse oi' [si - A]. 
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Thus, if represents the time 0 in Equation 2.13 and t̂ ^̂  represents t, 

f̂ n+1 
X(VL) = ^(*.+1- + J A(T) B K T) DT. (2.LIT) 

tn 

Equation 2.lk translates the state variables from their values at time t̂  

to new values at time t ,. . The elements of the 0( t  , -  t  )  m a t r i x  c a n  n+1 n+1 n'̂  

change from one iteration interval to the next as long as they are con­

stant within each interval. This is a property which will be used in 

later problems. 

A careful inspection of Equations 2.13 and 2.l4 reveals that the only 

unknown quantity is the matrix _̂ (t) and Equation 2.12 defines it as the 

inverse Laplace transform of the matrix [si - A] Although this is a 

straightforward approach for finding the ̂ (t) matrix, there are other 

methods of finding this matrix from inspection of diagrams which repre­

sent the system to be analyzed (ll). 

The method used in this report, other than the straightforward ap­

proach, is discussed in an article by Kalman and Bertram (20) and is 

based on the general analog computer simulation of Figure 1. It is im­

portant to observe that this simulation represents the system with no in­

puts connected. To evaluate the ̂ (t) matrix let; 

g..(s) = transfer function from the input of the integrator to 

til 
the output of the i integrator in the analog simulation of Figure 1, 

Then, 
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nn 

'n2 

"nl 

'In '2n 

dx, 

dt 

12 

11 '22 

'21 

Figure 1. Analoc simulation for a system of first order differential equations (lY, Figure 3) 
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0(t) = (2.15) 

V -1 
where the inverse Laplb.ce transformation, J, , is applied to each ele­

ment of the matrix separately. This method is used in Appendix A to simu­

late a model proposed by M. Clynes for respiratory sinus arrhythmia (7). 

There are both advantages and disadvantages of using this type of 

system formulation and a discussion of some of the properties of state 

variable equations will follow. Since the type of system studied will 

certainly influence the choice of method of analysis, this discussion will 

refer to typical systems present in body control mechanisms. 

Since the state variable matrix equations can be programmed on a 

digital computer, which also can be given further instructions as to how 

to compute the desired results, it is possible to have precise control of 

all transfer functions as well as the parameters within the transfer func­

tions. This advantage will be illustrated in the simulation of M. Clynes' 

model, where a transfer function changes form depending on the derivative 

of its input variable. Due to this flexibility of equations and para­

meters, this method is ideally suited to handle large systems with para­

meters and transfer functions varying in a prescribed fashion. This is 

helpful in descriptions of complex body functions such as blood pressure 

regulation. 

The most obvious disadvantages of the state variable approach are 

the need for a digital computer for rapid analysis and the difficulty, as 

compared to an analog computer, in changing fixed parameters during 
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simulation runs. Even a system of two variables becomes cumbersome at 

times when long-hand calculations are made and a digital computer is cer­

tainly welcome. Yet, even if programs are available and can be used for 

the specific problem to be solved, it is difficult to change individual 

parameters in the model in order to assess their influence on the final 

answer. Hopefully, these disadvantages are outweighed by the greater 

mathematical flexibility offered by the formulation. 
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III. LIAPIMOV'S SECOND METHOD APPLIED TO A WONLIKEAR BIOLOGICAL SYSTEM 

A. Introduction 

In the study of control systems in general, there are two separate 

goals which may be achieved. One goal is to find the actual variation, as 

a function of time, of all the variables concerned; however, in many prob­

lems this is difficult, if not impossible, with present methods. To gain 

more information about these difficult problems, a different approach is 

attempted. The information from this approach being facts concerning the 

solutions but not the actual solutions themselves. This second approach 

will be used in this chapter since the system to be analyzed is nonlinear 

and its time solution is not easily obtained by conventional methods. 

The chapter will begin with a brief description of the cardiac pace­

maker or sinoatrial node and the influence of vagal innervation on its 

rate. Then Liapunov's Second Method will be discussed and later used to 

predict the upper limit for vagal tone or impulse frequency above which 

the sinoatrial node ceases to be active. 

B. Mathematical Description of Sinoatrial Mode Influence on Heart Rate 

The cardiac pacemaker or sinoatrial node is located near the junc­

tion of the precava and right atrium. It is club shaped in the dog and 

tapers to a fine end, or tail, at the angle of the junction of the pre­

cava and the postcava (l2). Nearly any region of the syncytial tissue of 

cardiac muscle can produce propogating action potentials but the sinoa­

trial node region seems to control the actual heart rate because it de­

velops action potentials faster than any other part of the heart muscle. 

The potentials of this region are never static, i.e., during diastole the 
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potentials are falling until a definite voltage level is reached, then 

another impulse is generated and propagated away through the cardiac 

muscle. This causes the atrium to contract, and the action potential 

propagates to the atrioventricular node which then responds to send im­

pulses through the Purkinje conduction system. This causes the ventricles 

to contract and force blood out of the heart. The repetition rate of this 

cycle is controlled principally by the sinoatrial node but in its absence 

the atrioventricular node will take over. The main interest of this 

study is in the functional properties of the sinoatrial node and the 

effect of vagal influence on them. 

Warner and Cox (38) have suggested a mathematical model which re­

lates frequency of vagal stimulation to the period of heart rate governed 

by the pacemaker. Their model, shovm diagramatically in Figure 2, relies 

on the fact that acetylcholine is the chemical mediator which controls the 

rate of pacemaker potential variations. The following equations mathe­

matically describe their interpretation of the time variation of the heart 

rate. The word Equations 3.la and 3-2a are added by the author for clarity. 

The rate of change _ The increase of _ The decrease of fo -i \ 
of charged vesicles charged vesicles charged vesicles  ̂ ' 

- W(t)) - kg N(t) fg (3.1b) 

The rate of change Amount of acetylcholine Amount of 
of acetylcholine at = released by action - acetylcholine 
the sinoatrial node potentials hydrolyzed 

(3.2a) 
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2b aCgft) kgnĈ N(t) fg 

dt V. 
(3.2b) 

The equation describing the period, p, of heavy activity is 

3 9 = Po * *10 Cgft), for CgCt) < Cg, (3.3) 

where p̂  is the initial period of the heart cycle before stimulation and 

is a proportionality constant. 

Their reasoning and explanation of these equations is as follows 

(38): 

"At the end of each nerve fiber there are small vesicles which 
contain acetylcholine in concentration Ĉ . A fraction kg of these 
vesicles discharge acetycholine with the arrival of each stimulus. 
The rate at which the number N of these ve&icles (which are "charged" 
with acetylcholine and are capable of discharging) changes with re­
spect to time is shown in Equation 3.1b. N is a constant and repre­
sents the maximum number of charged vesicles achieved in a steady 
state when the nerve is not firing. With each action potential 
kgN(t) vesicles are discharged from each nerve ending decreasing the 
number of charged vesicles. The rate at which the number of charged 
vesicles is replenished is proportional to the difference between 
W(t) and ÏÏ J that is , at a rate proportional to the amount by which 
N(t) is decreased from its resting value due to preceding action 
potentials. CL(t), the concentration of acetylcholine at the sinoa­
trial node just outside the vesicle near the nerve ending, is de­
scribed by Equation 3.2b." 

As shown in Equation 3.2b, the concentration [̂ (t) will change at a 

rate which depends on f2(t), and the product kgĈ N(t), which is the amount 

of acetylcholine released by each action potential, and on n, the number 

of fibers responding to each stimulus. The acetylcholine is hydrolyzed 

by the enzyme cholinesterase at a rate proportional to [̂ (t). Vg is the 

volume into which the ejected acetylcholine is diluted. The period p of 

the heart cycle will be changed by an amount proportional to [̂ (t) as 
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Vagal frequency 

/ 
jo 

jo 

N vesicles con­
taining acetylcho­
line of concentra­
tion 

OgCt) 

Hydrolyzed acetylcho­
line products 

fgft) 
lo 

\o 

\o 

OgCt) 

Volume = Vg 

Figure 2. Schematic diagram of the proposed mechanism of discharge and 
hydrolysis of acetylcholine at the sinoatrial node (38) 
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long as CgCt) does not exceed a critical value . 

Warner and Cox have assumed a linear hydrolysis of acetylcholine in 

their model and have restricted the model to values of [̂ (t) lower than 

some constant Ĉ . Since the hydrolysis of acetylcholine is an enzymatic 

reaction, it is reasonable to assume a linear rate of reaction with re­

spect to substrate concentration when the substrate is present in much 

lower concentration than the enzyme. When the substrate concentration be­

comes appreciable and the enzyme is being taxed to its capacity, a satura­

tion will occur and no matter how much substrate is added only a constant 

amount will be hydrolyzed (lO). This is shown by the smooth curve in 

Figure 3- Warner and Cox did not pursue their model any further than the 

linear approximation for the enzyme reaction, but did specify an upper 

limit of = Ĉ  above which their equations did not hold. They also 

reported sinoatrial block for vagal stimulation frequencies above I3 to 15 

cycles per second. 

This report will show that the block can be predicted if the assumed 

enzyme reaction is described by a reaction curve similar to the smooth 

curve of Figure 3- This function is represented mathematically as: 

This is the well known Michaelis-Menten equation (lO, p. 252) which de-

a CgCt) 

dt 

CgCt) 

ÎT-Tĉ  
(3.4) 

scribes the rate of decomposition of a substrate, CgCt), in the presence 

of an enzyme. K is the Michaelis constant and is dependent on the ability 
kg Cs 

of the enzyme to influence the decomposition. The quantity is the 
2̂ 

maximum rate of reaction possible. 
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Approximation (used for Laplace transform analysis) - p  
•H 

Actual curve (used for Liapunov analysis) 
- p  

•H 

4̂  

Substrate concentration (C,(t)) 

Figure j. The rate of destruction of a substrate as a fun.rtion of the concentration 
of the substrate 
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The straight line approximation to this curve, shown as a dotted line 

in Figure 3, is used in Appendix B to facilitate a Laplace transform 

analysis of this problem. 

Because of the lack of knowledge of the mechanics of reaction within 

the node, the saturation characteristic cannot be attributed to enzyme 

scarcity only, but may be due to several other factors, such as diffusion 

of acetylcholine to the enzyme sites (38), degeneration of the enzyme, or 

other unknown intermediary reactions. Although the exact mechanism is not 

known and therefore the foregoing formulation has not been substantiated 

experimentally, this formulation is similar to the one proposed by Warner 

and Cox in the low concentration range and also predicts sinoatrial block 

at high frequencies of stimulation. 

Substituting the proposed hydrolysis function into Equation 3'2b and 

rearranging Equation 3-lti, the following system of equations results: 

This is the system which will be analyzed by using results from 

Liapunov's Second Method (23). Before applying this theory to the prob­

lem, a number of theorems and definitions will be presented. 

-(ky + kg fg) »(t) (3.5) 

"9 G, Cgft) 

2̂ 
(3.6) 

C. Liapunov's Second Method 

The system to be considered will be of the form shown in the follow­

ing equation: 
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X = F (X,t), (3.7) 

where X is a column matrix of derivatives of state variables mentioned in 

Chapter II, F(x,t) is a column matrix whose independent variables are 

the state variables and time. The method of Liapunov is concerned with 

the behavior of a scalar function V(x) which is called the Liapunov func­

tion. (This function must have the following properties (22), 

(a) V(x) is continuous together with its first partial derivatives 

in a certain open region Q about the origin, where Q is the 

region in which the inequality, X < A, is satisfied. 

(b) V(0) = 0 

(c) Outside the origin (and always in Q) V(X) is positive 

(a )  #  < 0  
dt — 

Property c implies that V(x) is non-negative and vanishes only at the 

origin. A helpful geometric interpretation of V(x) is given by LaSalle 

and Lefschetz (22) in their book on Liapunov's Second Method from which 

the introductory material of this chapter is taken. 

In the introductory discussion which follows, a number of terms and 

concepts are used which must be defined and explained. These terms will 

now be defined. Figure 4 is included as an aid in interpreting these 

definitions. 

1. The origin shall be the point V(o) = 0. 

2. S(r) is the region X < R 

3. H(r) is the boundary X = R 

4. The annular region r < X < R shall be written 
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5. X° shall be the initial starting conditions for the vector X and 

the subsequent unique path followed as time advances will be de-

+ 
noted by g . 

6. The origin is stable whenever for each R < A there is an r < R 

such that if a path g"*" initiates at a point X° of the spherical 

region S(r) it remains in the spherical region S(R) ever after; 

that is, a path starting in S(r) never reaches the boundary 

sphere H(R) of S(R) in Figure 4. 

7. The origin is unstable whenever for some R and any r, no matter 

how small, there is always in the spherical region S(r) a point 

X such that the path g through X reaches the boundary sphere 

H(R). 

It is important to observe that these definitions of stability con­

cern the origin, F(0,t) = 0. Therefore, it is sometimes necessary to 

translate the origin by the transformation, 

X' ~ X ~ i (3-8) 

Liapunov's theorems for stability are as follows: 

Theorem 1. If, 

(a) V(X) > 0 for V(x) < e 

(b) V(X) > 0 for all X in 0 

 ̂the origin is unstable 

Theorem 2. If, 

(a) V(X) >0 X ̂  0 

(b) V(X) < 0 for all X in Q 
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Asymptotica: 
stable 

Stable 

-H(R) 

Unstable 
S(R) 

H(A) 

Figure 4. Illustration of the terms associated with the various degrees 
of stability (20, p. 31) 
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the origin is stable 

Theorem 3. If, 

(a) V(X) >0X̂ 0 

(b) V(X) <0 X / 0 

the origin is asymptotically stable 

Inspection of these theorems shows that the theorem concerning asymp­

totic stability is the most useful, in terms of knowing how the variables 

are behaving or will behave in the future. 

The greatest disadvantage of this approach is the formulation of 

V(X). There is no unique method by which V(X) can be constructed from 

knowledge of the system equations. This is an active area of research at 

the present time and hopefully a method will soon be discovered. 

Since the V(X) is not unique, the conditions for stability associated 

with a specific V̂ (X) can only be classified as necessary and not suf­

ficient. It is possible that another Liapunov function V̂ (X) would yield 

more general conditions than the initial V̂ (X). Thus throughout the use 

of this theory, it must be kept in mind that all criteria are only nec­

essary conditions and not sufficient. 

Despite the difficulty in forming satisfactory Liapunov functions 

many systems have been investigated by Liapunov's Second Method and use­

ful results gleaned from the work. In the investigation of some nonlinear 

systems, this method has produced stronger conditions than the Routh-Hur-

witz criteria (29). Krasovskii (2l) has found this to be true for many 

systems consisting of two differential equations. Higher order systems 

have not been completely investigated because of the much greater mathe­

matical complexity, but work is being done in this area (l4, p. ̂ 7). 
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A system of equations analogous to that which will be discussed 

later in connection with the heart rate control system is analyzed in 

Hahn's (l4) book on Liapunov's Second Method. The system of equations is: 

= ay + cx (3.9) 

= by + f(x) (3.10) 

The Liapunov function used to derive necessary conditions for asymp­

totic stability is 

X 

v(x,y) = { (f(§) a - be Ç) d§ + ̂  (ax - by)̂ . 

•'0 

Using this function, the following conditions are necessary for asymp­

totic stability from any initial point (x,y) (l4, p. 43). 

Condition 1. ( + a)<0 x f 0 
X ' ' 

Condition 2. ( ̂ - be) > 0 X / 0 

If these conditions are true for the system of Equations 3-9 and 3-10, 

the values of x and y will tend to zero from any starting point (x,y) as 

time approaches infinity. 

This concludes the discussion of Liapunov's theory and the theoreti­

cal results to be used in the next section. The next section will deal 

with the application of these results to the pacemaker control problem. 

The result wanted is a condition specifying that value of vagal stimula-
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tion frequency produces infinitely growing values of or instability. 

D. Application of Liapunov's Second Method 

to the Sinoatrial Node Equations 

The equations of interest are Equations 3.5 and 3.6. For conve­

nience, the following substitutions are made: 

" ̂8 ̂ 1 ̂ 2 
A = ky + kg fg, B = xy*,, C 

and 

D = SA 

2̂ 

With these substitutions, Equations 3*5 and 3-6 become 

= - A W(t) + B (3.11) 

and 

dC (t) D C (t) 

dt " ° \ + Cgltj • (3-12) 

The purpose of this section is to investigate the conditions nec­

essary for stability of this system of equations. First, it is necessary 

to perform a linear transformation of Equations 3.5 and 3.6 in order to 

satisfy the condition stated on page I9, 

F(X,t) = 0 
X = 0 
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For our set of equations, this 

W'(t) = N(t) - I 

and 

ĉ 'Ct) = CgCt) - . 
CB - ̂  

With this transformation, 

= -AW'(t) 
dt  ̂' 

and 

be satisfied if 

(3.13) 

(3.14) 

(3.15) 

= c r ( t ) + ^ - D  5 b  ( 3 . 1 6 )  

K + C.'(t) + m 
m 2 ^ ^ AD , 

CB - ̂  

These equations are now in a form analogous to Equations 3-9 and 3.10 

where, identifying analogous terms, 

a = -A, b = C, c = 0, and 

Km 

f(x) = f(C,'(t)) = ? . D CB 
2 A K 

%: + c_'(t) + m 
m 2 ' ' AD , 

CB - ̂  
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In order to find the necessary conditions for asymptotic stability of 

Equations 3-15 and 3.16, Conditions 1 and 2 for asymptotic stability of 

Equations 3-9 and 3*10 are analyzed with the proper substitutions used. 

To satisfy Condition 1, 

f(c '(t)) 
C,'(t) < <3.17) 

and for Condition 2, 

f(c '(t)) 
 ̂ (3.18) 

Since if Condition 2 is satisfied Condition 1 will also be satisfied, the 

necessary conditions for asymptotic stability can be found from the con­

sideration of inequality 3«l8- Therefore, substituting the proper ex­

pression for f(C2'(t)), it is evident that, for asymptotic stability, the 

inequality 

VTtj 

Os'Ct) + 

CB 
A -r- - D 

Ê  ̂
K 
m 

Km + CgCt) + AD _ 1 

< 0, ^ 0, 

(3.19) 

must be satisfied. In order to find the necessary conditions for stabil­

ity for the original system, Ĉ 'ft) is replaced with its equivalent ex­

pression obtained from Equation 3.1̂ . Then 
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CgCt) 
K 
m 

CB 
A 

D 
CgCt) 

< 0. (3.20) 

Multiplying and clearing fractions within each term. 

AD - CB 
(AD - CB)Cglt( - CB K 

•((AD - CB)Cg(t) - CB Kj 
< 0. (3.21) 

Multiplying by (-l) and reversing the inequality, 

(AD - CB)((AD - CB)Ĉ (t) - CB K V 
— > 0. (3.22) 

A(K^ + C2(t))((AD ^ CB)C2(t) - CB K^) 

Therefore, for asymptotic stability 

AD CB , 
+ Cgitjj > A(K̂  + Cgitj) 13.23; 

must be true. The quantity (K̂  + [̂ (t)) may be either positive or nega­

tive and the criteria that must be satisfied are 

AD > CB for [̂ (t) > -K (3.24) 

AD < CB for C (t) < -K̂ . (3.25) 

Since the concentration [̂ (t) cannot physically be negative, the only 

criterion in this specific problem is inequality 3.24. Inserting the 
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proper values for A, B, C, and D gives 

9̂°' > y "A" (3.26) 
— ' TVMÇTJTV, 

for CgCt) >0 > - K̂ . Rearranging terms in inequality 3-l6, the sta­

bility criteria for f̂  is found to be 

f„ < . (3.27) 
2 

s 

S V 

Rearranging the right hand side of inequality 3.27 results in the 

conclusion that for the concentration of acetylcholine to approach a con­

stant value as time approaches infinity, the frequency, fg, of vagal stim­

ulation must be less than the quantity. 

kg Cs \ 

VsVi - Ws 

This implies that if k is increased, the upper limit on fg(t) which 

insures stability, should also increase. If C is decreased the upper 
y s 

limit on f̂  should decrease. Since the drug atropine combines with the 

receptor sites of the sinoatrial end plates (5, p. 688), it is postulated 

that this phenomenon will effectively increase C . The reason for this y s 

being that, since atropine is combining with the receptor sites, this 

reaction effectively lowers the concentration of acetylcholine near the 

sites as long as the drug is present. 
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Since physostigmine competes with acetylcholine for the enzyme cho-

linesterase (5, p. 688), it is postulated that the addition of this drug 

will decrease thus decreasing . This raises the concentration of 

acetycholine at the receptor sites and lowers the stimulation frequency 

limit for stability. 

If the piecewise continuous curve of Figure 3 is used to describe 

the decomposition of CgCt), the Equations 3-5 and 3.6 can be investigated 

by Laplace transform methods as in Appendix B. It is interesting to note 

the close agreement between the two approaches as far as stability condi­

tions are concerned. 
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17, EXPERIMENTAL VERIFICATION OF PACEMAKER ANALYSIS 

Twelve mongrel dogs, male and female, were anesthetized with sodium-

pent obarbital (30 mg/kg), supplemented as needed. An endotracheal tube 

was inserted and the animals maintained on positive pressure ventilation 

with 100% oxygen. In order to isolate both left and right vagi, a mid­

line incision was made from the base of the larynx, caudad to the manu­

brium sterni cartilage. The common carotid arteries and their respective 

vagi were exposed by separating the sternocephalicus and sternohyoideus 

muscles. Each vagus nerve was dissected out of the carotid sheath and 

severed at the level of the first tracheal cartilage. The distal ends 

were connected by means of sleeve electrodes to a Grass 8-4 stimulator 

equipped with a Grass 8IU-4B isolation unit. The stimulus was of one 

millisecond duration and from 20 to 4o volts amplitude depending on maxi­

mal response of heart rate to stimulation at various frequencies. After 

maximal response was achieved, the voltage was held constant at the level 

throughout the experiment on each dog. The frequency was varied in cali­

brated steps of 1,2,4,7.6,10,12.5,13.3,15, and 20 cycles per second. If 

data points were needed in between these readings less accurate frequency 

values were used. 

In order to expose and locate the pacemaker, the chest was opened 

through the right, fifth intercostal space and rib retractors used to 

spread the ribs for access to the right atrium. The cardiac lobe of the 

lung was retracted dorsad exposing the right atrium. The pericardial sac 

was incised parallel and ventrad to the phrenic nerve and, using tissue 

forceps, the cut edges were retracted dorsad and ventrad to expose the 

junction of the right atrium and the precava. The sinoatrial node was 
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located by selectively dropping ice water on circumscribed areas of the 

right atrium. The point at which this procedure caused a slowing of 

heart rate was recognized as the sinoatrial node (33). This was usually 

near and slightly caudal to the junction of the right atrium and the pre-

cava. 

All recordings were monitored on the Jrass Model 5 Polygraph. An 

electrocardiogram, lead II, was recorded as well as one with a special 

lead arrangement which enhanced the P wave of a normal electrocardiogram. 

This was done because the P wave potential is composed mainly of contri­

butions from electrical activity in the sinoatrial region. The entire 

system is illustrated in Figure 5. An insulated wire with a bead of 

solder on the end was passed into the jugular vein at the level of the 

first tracheal ring and the bead passed to the precava region just craniad 

to the rî t atrium. A reference electrode was attached to the medial 

portion of the cranium and a common ground placed on the right hind leg. 

Figures 6 and 7 show the recordings taken for two different frequencies 

of stimulation. Figure 6 shows the response to a frequency of stimula­

tion which did not produce sinoatrial block. The upper record, from the 

special P wave monitoring arrangement, shows a strong P wave (the initial 

large spike of each two-spike complex) present during stimulation. Fig­

ure 7 shows the response to a frequency which did produce sinoatrial node 

block. The P wave of both the top and bottom record disappears during 

stimulation. 

Each experiment consisted of a control run of heart rate recordings 

as the frequency was varied from zero to the point at which the P wave 

disappeared for at least 10 seconds. Each succeeding run was exactly the 
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Figure 5. E.perimental arrangement for vagal stimulation 
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Figure 6. Heart rate response to vagal stimulation (frequency of stimulation; 
k cycles per second, intensity; 40 volts, chemical influence, 6 
drops of 5t*g/cc physostigmine) 
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Figure 7. Heart rate response to vagal stimulation (frequency of stimulation 
8 cycles per second, intensity; Uo volts, chemical influence, 6 
drops of 5P>g/cc physostigmine) 
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same except for local administration of either atropine or physostigmine 

on the sinoatrial node just prior to making the run. At each frequency of 

stimulation the heart rate was allowed to reach a steady value before the 

rate was used as a data point. The results of a typical experiment are 

shown in Figures 8 and 9* The heart rate of all dogs tested reacted in 

qualitatively the same manner; i.e., if physostigmine was added, the re­

sulting frequency limit was lowered and if atropine was added the limit 

was raised. 

Atropine and physostigmine were administered drop by drop throû  a 

20 gauge needle and the concentration of both drugs was ĵigm/cc. As 

shown in Figure 8, physostigmine was added first in 3 drop increments. As 

shown in Figure 9? atropine was then added in 2 drop increments. Individ­

ual experiments on the effect of atropine and physostigmine alone were 

performed and similar responses recorded. Each of the curves of Figures 

8 and 9 can be reproduced faithfully for 30 to minutes after the ad­

ministration of the drug on the sinoatrial node. The total time required 

to obtain the data for the entire series of curves plotted in Figure 8 

and 9 was approximately 20 minutes. Thus, it was assumed that the in­

fluence of each incremental addition of drug remained for the duration of 

each experiment. 

Figures 8 and 9 illustrate the predicted influence, which was postu­

lated in Chapter III, when the sinoatrial node is perfused with physostig­

mine or atropine. In both cases, the predictions were substantiated in a 

qualitative sense. These results are encouraging in that they further 

substantiate the model proposed for the sinoatrial node. Since this was 
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Frequency of vagal stimulation rcycles \ 
\second / 

Figure 8. Period of heart rate vs. frequency of vagal stimulation 
(under the influence of varied amounts of physostigraine) 
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2 Drops atropine solution 
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atropine 

5 10 15 20 25 

Frequency of vagal stimulation ( second ) 

Figure 9. Period of heart rate vs. frequency of vagal stimulation 
(under the influence of vaxied amounts of atropine) 
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only a qualitative experiment, more work must be done to quantitatively 

prove or disprove the model or the development leading to the predictions 

made. This could possibly be done by using an isolated sinoatrial node 

preparation. With such a preparation, possibly in a modified Ringer's 

solution, the concentrations of physostigmine and atropine could be mon­

itored along with the pacemaker rate and stimulation frequency (l). This 

would allow a quantitative study of their effects and thus a test for sub­

stantiating the validity of inequality 3-27 of Chapter III. 



www.manaraa.com

38 

V. STATE VARIABLE MODEL FOR CAROTID SINUS HEART RATE REFLEX 

A. Introduction 

The previous chapters have dealt with the mathematical analysis of 

the sinoatrial node and vagal influence on this node. This chapter will 

expand the analysis to a larger system containing the carotid sinus pres­

soreceptors, It is "believed that these bodies, located in the aorta and 

at the bifurcation of the internal and external carotids, are pressure 

sensitive. Bronk and Stella have experimentally illustrated variable 

frequency pulse trains eminating from the receptors at the carotid bifurca­

tion (3). They have obtained data which related the frequency of impulses 

to the perfused carotid sinus pressure. These pulse trains travel along 

the carotid sinus nerve to the glossopharyngeal nerve. From this nerve, 

it is believed, the impulses travel to the vasomotor center in the reti­

cular formation of the medulla, where they are processed before travel­

ling down the vagus nerve to the sinoatrial node (26). It has also been 

found that these receptors not only regulate heart rate, but also have an 

effect on respiration. This point will be illustrated in the following 

chapter. 

B. Mathematical Model 

Using the results obtained by Bronk and Ferguson (2), Warner (37) 

postulated that the carotid sinus pressoreceptors produced impulses at a 

frequency dependent on both the static pressure of the region and the 

rate of change of that pressure with respect to time. Warner's mathe­

matical description of this behavior is represented by the following equa­

tion : 
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f^(t} . - V + kg (P(t) - P^}, (5.1) 
dt 

where f̂ t̂) is the frequency of impulses on the carotid sinus nerve, 

and kg are constants to be determined, and P(t) is the perfusion pres­

sure. is a minimum pressure below which the pressoreceptors are in­

sensitive to changes in pressure. This model has been modified by Grodins' 

(13, p. 181} to be of a form similar to 

df (t) d[P(t) - P ] 
+ f (t) = k — + k CP(t) - P ], (5.2) 

dt dt 

where T is a time constant associated with the carotid sinus. This latter 

equation will be used in the following mathematical analysis. The last 

term on the right hand side of Equation 5.2 differs from Grodins model in 

that it is a linear approximation of the steady state ratio between pulse 

frequency and perfused carotid sinus pressure (3). 

In this development, the influence of the brain on the impulses from 

the carotid sinus was postulated to be an attenuation of the pulse fre­

quency as well as a noticeable time delay. The reasons for postulating 

this function were : 

1. Since the normal frequency range of the impulse trains in the 

carotid sinus is from 50 to l40 impulses per second and the nor­

mal frequency range of the vagus impulse trains used in the 

previous chapter are roughly from 0 to 2 impulses per second, a 
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possible transfer function is an attenuation constant (35). 

2. In data obtained in the experiments described later, a delay of 

1 second between the impression of pressure on the carotid sinus 

and a noticeable heart rate change was noted consistently in all 

records. There are numerous points where this delay could occur. 

It could be contributed by the carotid sinus, the conduction of 

impulses along the nerves, the passage of impulses through the 

' brain, or the sinoatrial node itself; however, all except the 

brain can be eliminated. The carotid sinus transfer function, 

from pressure to impulse frequency, has been shown by Bronk and 

Stella (3) to have a very small delay. This delay is much less 

than 1 second. The conduction velocity of the carotid sinus 

nerves has been found to be near 33 meters per second (25). 

Since the total path travelled from the sinus to the sinoatrial 

node is less than 1 meter, this is ruled out as a possible ex­

planation of the delay. The response to vagal stimulation of 

the sinoatrial node in Warner and Cox's experiments shows no de­

lay either, thus eliminating all areas except the brain. To 

further substantiate Warner and Cox's results, the same type of 

experiment was run on one dog. The experimental procedure is 

described in Chapter IV. figures 10 and 11 show the results for 

two frequencies of stimulation. It is evident that there is 

little lag between vagal stimulation and the heart rate response. 

Experiments were not run definitely to confirm the above postulate; how­

ever, the above reasoning and evidence discussed strongly suggests this 

conclusion. 
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(frequency of stimulation, 3 cycles per second, intensity, iU volts) 
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The equations used previously for determination of the period of the 

sinoatrial node potential are again used in this development. The com­

plete block diagram of the system studied is shown in Figure 12. The ca­

rotid sinus nerve impulse frequency is determined by Equation 1 and this 

is processed by an attenuation constant in the brain. A delay of one 

second is introduced before the resulting impulse train travels down the 

vagus nerve to the sinoatrial node. At the sinoatrial node, the vagal 

frequency, f̂ , is used as a parameter in the state variable formulation 

describing the sinoatrial node potential. 

Examination of the block diagram of Figure 12 reveals that the effect 

of carotid sinus stimulation by an increase of pressure at the site is a 

rise in vagal impulse frequency and this information (frequency of im­

pulses on the vagus nerve) is used in the sinoatrial node equations as a 

parameter. The numerical problem of finding the time variation of heart 

rate period for specified pressure input at the carotid sinus is there­

fore the solution of the sinoatrial node equations with tijne varying 

coefficients determined by vagal impulse frequency f̂  and the iteration 

period At . 
n 

In matrix notation, the sinoatrial node system can be represented as 

follows : 

N(t) _(k^+kgfg) 0 N(t) 

+ 

3
^
 

1 

CgCt) 
n fgfgC^ 

L Vg 2̂. 

Cgft) 0 

(5.3) 
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Figure 12. Block diagram representing each peurt of the carotid sinus heart rate reflex 
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where u(t) represents a step function of unit amplitude from t = 0 to 

t = «>• In order to compute the transition matrix 0(t) the matrix [sI-A] 

of Chapter II must be evaluated. It is, 

[sI-A] = 

8 + (k̂ +kgfg) 

"V2̂ 1 

V„ 

0 

s + 
Vr 

(5 .4)  

The inverse of this matrix is computed as. 

S+k̂ +kgfg 

[sI-A]"̂ = (5 .5)  

nkgfgĈ  

V2(s+l̂ +k8f2)(s+ ̂  ) (s+ kg) 
V, 

2 J 

From Equation 2.12 in Chapter II, 

(̂At) = J"[sl-A] j = 

-(k̂ +kgf2)6t 

nkgfgÔ  V e -e / 

VgCky+kgfg- ] 

(5 .6)  
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The general solution of the system is then 

n̂+1 

X(t„+l )  =  "*•  \  Bu(T)  dT. s n' —' n' \ n+1 

t 
n 

(5.7) 

Since in the problem being-considered _̂ (At̂ ) is constant throughout each 

iteration interval, t̂ ^̂  - t̂  = At̂ , it is convenient to change the limits 

of integration on the convolution integral to T = 0 and T = At̂ . Thus, 

At 

X(TN+I) = ^ ^(AT^-T) BU(T) dT. (5.8) 

Substituting the appropriate elements for ̂ (At̂ -r) and observing that 

B = 

V N m 

0 

(5.9) 

the integral can be represented by the following matrix. 

r At 

At 

5 (̂At̂ -T)Bu(T)dT = 

s "-A dT 

j-U -e I 

0 2̂'̂ Ws-Y  ̂ (;.ioj 

IdT 
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Evaluating the integrals within the matrix, 

At 

S (̂At̂ -T)Bu(T) dT 

Vm ,, 

W2 ̂ ' 

k. 
VgCk̂ +kgfg- ) 

1 
(1-e } 

(5.11) 

The entire matrix solution for the time variation of N(t) and Ĉ ft) is 

then : 

r -(YV2)^*D 
0 

V, 

Ht J 

=2(\) 
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+ 

% 
k̂ +kgfg 

-(ky+kgfgiAtn 
(1-e } 

Vm("W2' 

kg k 

\ V ®ii 
^ (1-e ^ ) 

1 -(k̂ +kgfgjAt 
(l-e n, 

(5.12) 

Matrix Equation $.11 translates the states N(t̂ ) and [̂ (t̂ ) to and 

[̂ (t̂ ^̂ ). This development is dependent on the fact that all the elements 

in the matrices involved are constant within each iteration interval. In 

order to compare the results of this formulation with experimental evi­

dence, it is necessary to obtain numerical values for the constants in 

the equations. Values for some constants can be found in Warner and Cox's 

article (38); 

\ ~ second ' 

kg 0.69 action potential 

0.87 
second 

and 

Vg = unit volume. 
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From a comparison of the equation describing the steady state concentra­

tion of = <») in Appendix A and the equation for period shovm in 

Warner and Cox's Figure 10 of their paper (38), the following relation is 

obtained. 

n 0^ = 0-65 k 
i,  ̂ • 

8̂̂ 1o\ 

The constants fg and At̂  are yet to be determined. The constant At̂  is 

chosen to be 1 second in order to reduce computations since they were 

done by hand and not computer. This interval is equal to or smaller than 

the intervals over which any matrix element changes value in the matrix 

equation during the time solution, therefore, it does not affect the ac­

curacy of the final solution. 

A piecewise constant function, fgCt), is obtained from Equation $.2 

through an averaging process explained in Appendix C. The constants k. 

KG, and T are adjusted by trial and error to give the best fit between 

1' 

theoretical and experimental results. 

Substituting the above values for k̂ , kg, k̂ , Vg and n into Equa­

tion 5.12, 

r -(2.75 + 0.69 fgjAt̂  

O.̂ éSfgCe 
-0.87At̂  -(2.75+0.69f2)At̂  

-e -0.87At 
n 

k̂ QN̂ (l.88+0.69 fg) 

N(t̂ ) 

Lc2(t„l| 
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+ 

2.75N m 
-(2.75+0.69f2)At 

2.75+0.69f. 
1-e 

2 ' n  

l.SSfg 

k̂ Qti.BG+o.ôgfgj 

-0.87At 
1.15(l-e ") 

(1-e 
(2.75+0.69f_)At 

") 
2.75+0.69f. 

(5.13) 

With At̂  equal to 1 second and determined by the method in Appendix C, 

a value for is found. Then the equation for heart rate is, 

r(\rn) = Î0 + ̂ 10 Cgftn+l) (5.14) 

where p̂  = O.5 seconds, thus 

P(tn+l) ' °-5 + *̂ 10 Gzftn+l) (5.15) 

With these equations and a step input of pressure of 300 mm. Hg, or 

P(t) = 300 u(t) (5.17) 

the theoretical variation in period is calculated in Appendix C. The re­

sulting theoretical curve for the period variation is shown in Figure I3. 
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Figure 13- Theoretical curve for heart rate reflex for a step input of pressure 
at the carotid sinuses (300 mm. Hg step applied at t = o) 
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VI. EXPERIMENTAL RESULTS FOR CAROTID SINUS HEART RATE REFLEX 

A. Experimental Procedure 

The purpose of the experiment was to record the response of the 

period of heart rate when the carotid sinus pressoreceptors were stimulated 

by a specified perfusion pressure. The pressure used during this experi­

ment was a step of magnitude equal to 3OO mm. Hg. 

The experiment was run on five mongrel dogs, both male and female, 

weighing 15 to 30 pounds. Three different procedures were used to anes­

thetize the dogs and they are listed below: 

Procedure #1. Initially, intravenous injection of 30 mgm/kg of 

sodium pentobarbital and supplemented as needed. 

Procedure #2. Initially, intravenous injection of 110 mgm/kg of 

QF-chloralose and supplemented as needed. 

Procedure #3. Initially intravenous injection of 10 mgm/kg of 

thiopental sodium, and supplemented as needed, plus 

30 mgm/kg of a-chloralose. 

The a-chloralose solution was injected while warm (65°-70° Centi­

grade) because of its low solubility in water. It was prepared as a 1% 

solution in 1 liter lots by heating at 80° Centigrade for 8-10 hours. In 

all preparations the sympathetic nervous activity was blocked by the ad­

ministration of 0.5 mgm/kg dihydroergotamine intravenously (36). 

Isolation of the left and right carotid sinus was accomplished by 

two incisions, one to the left and one to the right of the midline of the 

neck and directly above the separation of the sternocephalicus and ster-

nohyoideus muscles, beginning at the level of the cricoid cartilage, or 

slightly below, and ending near the base of the mandible. On each side, 
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the sternocephalicus and sternohyoideus muscles were separated and the 

thyroid gland retracted laterally to expose the common carotid bifurca­

tion into internal and external branches. The internal carotid, occipital, 

external carotid and lingual arteries, which were distinguishable from 

nervous and fatty tissue, were ligated. Care was taken to preserve the 

carotid sinus nerve which emerged on the medial side of the bifurcation 

of the common carotid artery and proceeded craniad alongside the internal 

carotid artery. 

Figure l4 shows schematically how the experiment was set up for ap­

plying a pressure function to both left and right carotid sinuses simul­

taneously. The measured variables were period of the heart rate, per­

fusion pressure, and respiration. The pressure was applied to the caro­

tid sinuses by cannulating both common carotids 2 to 3 inches caudad to 

the bifurcation and inserting Horsley needles into the arteries. Heparin-

ized saline was used for the perfusion solution. 

While clamping the pressure line to the carotids, the pressure reg­

ulator could be set to give a step of 300 mm. Hg when the 3-way valve was 

set in the position to pressurize the pressure bottle. With the reg­

ulator set to a pressure of 300 mm. Hg and the 3-way valve turned to the 

position which opened the pressure system to the outside air, the clamp 

was removed. When the step of 300 mm. Hg pressure was desired, the 3-'way 

valve was turned to connect the regulator to the system, thus impressing 

a pressure, via the saline, onto each carotid sinus. The pressure was 

removed by rotating the 3-way valve to allow continuity with room air. 

This system was used in order to maintain a steady pressure. It was very 

difficult to ligate all of the small arteries which emanate from the 



www.manaraa.com

Electrocar-
J o, jram Respira 

Perfusion 
pressure 

way valve 

Clamp 

To 90 
psi air 
line 

Pressure 
regulator 

Pressure 
bottle 

A - Air flow transducer 

B - Pressure transducer 

C - Calibration pressure gauge 

D - Heparinized saline 

VJL 
f 

Figure l4. Diagram of experimental procedure for carotid Ainus pressure perfusion 
I 



www.manaraa.com

carotid sinus area and therefore there was a small amount of leakage. The 

capacity of the air line was sufficient to keep a steady pressure on the 

carotid sinus preparation even though there was a slow, but constant, loss 

of fluid through the untied arteries. Heymanns and Bouckaert (15) and 

also Chungcharoen, et (6) have written excellent descriptions of the 

carotid sinus area. Figure 15a and l̂ h are included here to show the fine 

anatomical features of the arterial supply to the area. Figure 15a shows 

a latex rubber cast taken from a canine cadaver the arterial system of 

which had been injected. It is interesting to note, in this preparation, 

the very fine communicating branch between the left occipital and internal 

carotid arteries. This serves to point out the difficulties involved 

when an attempt is made to completely isolate and pressurize the carotid 

sinus area. 

The data obtained was recorded by the Grass Model 5 Polygraph. Three 

channels of its six channel capacity were used. Respiration was mon­

itored by measuring the. pressure differential across a fine wire mesh 

which was caused by a flow of air through the mesh. The animals breath 

was the actual air flow measured and the differential pressure was measured 

with a Grass volumetric pressure transducer, PT ̂ A.. The perfusion pres­

sure was measured with a Grass physiological transducer, P23AC (capable 

of measuring pressures from 0 to 750 mm. Hg). 

B. Discussion of Experimental Results 

Figures I6, 17, I8, and I9 show the response of the heart rate peri­

od, p, as a function of time for a pressure input of 3OO mm. Hg on the 

carotid sinus receptors. Dog A, used in Figures 16, 17, and I8, was a 3O 
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pound male and Procedure #1 was used for administration of the anesthetic. 

Dog B, used in Figure 19, was a 25 pound male and Procedure #3 was used 

for administration of the anesthetic. The most evident observation is 

that the response is not consistent, but varies in maximum amplitude and 

possibly shape. This variation may be caused by fatigue of the carotid 

sinus receptors due to prolonged stimulation (3). The responses of Figures 

16 and 17 were taken from a series of stimulations separated by 30 to 40 

second rest intervals, while i'igure I8 was taken after the preparation was 

allowed to rest for at least 3 minutes. There is a noticeably larger re­

sponse in Figure 18. A longer portion of the record was included in Fig­

ure 18 to show the slow return of the period to normal. 

Another possible reason for this inconsistency may be explained by 

considering the impulse frequency on the vagus nerve. Since at zero pres­

sure the vagal impulse frequency due to carotid sinus innervation is very 

low, possibly 1 impulse every 20 seconds, it is important to know at what 

instant between pulses the stimulation occurs. If it is sufficiently 

close to the last pulse generated in the pulse train corresponding to zero 

pressure, it would then create a much higher frequency of innervation than 

if the stimulation was in the middle or close to the end of the zero pres­

sure pulse interval. This higher frequency of innervation would increase 

the initial acetylcholine concentration and thus raise the period of heart 

rate and thus affect the response curve. 

On all Figures(16, 17, I8, and I9) of this section, a delay of ap­

proximately 1 second is evident between the onset of stimulation and the 

initial response by the heart rate period. It is interesting to note that 

this delay is not evident at termination of the stimulation. This seems 
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Figure l8. Experimental heart rate response for a step input 
of 300 mm. Hg pressure on the carotid sinuses 
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Figure I9. Carotid sinus pressure effect on respiration. The top channel is 
respiration with inspiration plotted. The second channel is 
carotid sinus perfusion pressure P(t). The third channel is heart 
rate period, p, plotted downward 
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to support M. Clynes' theory of unidirectional rate sensitivity (8). Since 

this may be true, this report is interested in only the reflex due to the 

sudden increase and maintenance of pressure at the carotid sinus. 

After the initial response there is a slow variation in heart rate 

which has a period of about 2 to 4 seconds. Figure 19 shows that this 

variation is synchronous with respiration. Therefore, this variation was 

attributed to respiration influence on heart rate. 

Figure 20 shows a comparison of the curves resulting from experimen­

tal and calculated responses to a step input of 300 mm. Hg pressure on the 

carotid sinus. Table 1 is a compilation of theoretical results from Appen­

dix C and experimental results from Figure l6. The calculated curve was 

fitted by varying the unknown constants k̂ , KG, and T of Equation 5.2 in 

Chapter V. It should be noted that the shape of the curves agree quite 

well and that by choosing the proper constants it was possible to con­

struct the calculated curve to within roughly a IĈ  error in magnitude at 

all points. 

Table 1. Compilation of theoretical and experimental results for the 
heart rate period 

t(seconds) Theoretical 
P(t) 

t(seconds) Experimental 
P(t) 

0 0.500 0 0.500 
1.0 0.500 1.0 0.500 
2.0 0.670 1.8 0.625 
3.0 0.735 2.3 0.687 
4.0 0.656 3.0 0.750 
5.0 0,62k 4.0 0.650 
6.0 0.611 5.0 0.625 
7.0 0.607 6.0 0.610 
8.0 0.604 7.0 0.600 
9.0 0.602 8.0 0.600 
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An interesting respiratory reaction to the pressure stimulation of 

the carotid sinus is shown on the top recording of Figure I9. It is evi­

dent that after a period of 25 to 30 seconds of pressure stimulation, 

respiration ceases until shortly after termination of the stimulus. This 

phenomenon was also reported by Heymanns and Bouckaert in their work on 

the dog (16). In their laboratory they tested for respiratory apnea both 

before and after denervation of the carotid sinus. They found no reaction 

after denervation and thereby concluded that this was a reflex reaction. 

In 1932, Carl F. Schmidt wrote an excellent review of the literature on 

this topic and did further research with rabbits, dogs, and cats (31,32). 

His conclusions were that the respiratory center in the brain was notice­

ably affected by its blood supply, and specifically by occlusion of the 

vertebral and carotid arteries. He also substantiated Heymanns and 

Bouckaert's previous work. His final evaluation of the phenomena of 

respiratory apnea was that it was due to a reflex, alterations in central 

blood flow to the respiratory center, or to both in combination. These 

conclusions leave much to be desired as far as the actual knowledge of 

carotid sinus influence on respiration is concerned, but are invaluable 

for a broad evaluation of the complete respiratory control mechanism. 

At this point it is well to mention that during this particular ex­

periment abnormal factors may be influencing the results. Dog A, used in 

Figures I6, 17, I8, was anesthetized with sodium pentobarbital as in 

Procedure #1 on page 52. Dog B, used in Figure I9, was anesthetized ac­

cording to Procedure #3 on page 52. The latter procedure uses of-chloralose 

as the general anesthetic. It is well documented (4,9) that a-chloralose 

enhances the carotid sinus reflex mechanism concerned with heart rate. 
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The above facts point out that the experimental procedures of these ex­

periments are not satisfactory in the determination of the normal opera­

tions carried on within the central nervous system. This suggests further 

study in methods of implantable pressure sources and transducers in order 

to run the same experiments while the animal is conscious and not under 

the influence of anesthetics. 
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VII. THE USE OF STATE VARIABLES TO DESCRIBE A CLOSED LOOP FEEDBACK SYSTEM 

In the previous chapters an open loop analysis of the sinoatrial 

node and carotid sinus has been presented. This chapter will show how 

the entire heart rate feedback system, using the carotid sinus as the 

error detecting device, can be described using the methods of state vari­

ables. This analysis will use the previous results presented for those 

parts of the system which have been analyzed. Parts which have not been 

analyzed and which need further study will be indicated by a function 

notation. One other assumption, the form of the equation describing pace­

maker potentials, will be discussed briefly but not rigorously developed 

from the intrinsic properties of the pacemaker. 

B. Analysis 

In block diagram form the system to be simulated is shown in Figure 

21, The pressure produced by the heart ventricle mechanism is compared 

to a static pressure P̂ and this difference is converted to a frequency 

f̂ (t) on the carotid sinus nerve. In the brain, f̂ (t) is altered by a 

multiplication constant and a time lag of seconds to produce f̂ Ct), 

the vagal stimulation frequency. The vagal frequency is used in the 

previously discussed sinoatrial node equations to obtain the concentra­

tion of acetylcholine at the node Ĉ Ct). 

The pacemaker potential equation 

A. Introduction 

y = 0 

(Pm+kinCp(t)) 
(7.1) 

o 10 2 



www.manaraa.com

p 
o 

Carotid sinus 

Equation 5.2 

of Chapter V 

Brain and vagus Sinoatrial node 
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is very similar to that proposed "by Clynes (5), which is 

 ̂+ [Ŵ r̂  - V(t)]y = 0, 
dt ° 

where V(t) = the vagal stimulation frequency, and r̂  = the normal 

heart rate. For very small variations in fgCt), which correspond to small 

variations in V(t), the variations of Cg/t) will also be small, therefore, 

/V, k-n̂  2k̂ oCg(t) 

Pq̂  (1 + 10̂ 2"̂  ) p̂  ̂ ô (7.2) 

Po 

Thus, Equation 7.1 does agree in form with Clynes equation for small varia­

tions in vagal frequency if for these small concentrations CgCt) is pro­

portional to fg(t). Since Equation 7.1 has been postulated only from evi­

dence suggesting an oscillatory phenomena (30, p. 59̂ )? this area of the 

development needs more research, both theoretical and experimental, with 

the objectives of first establishing a rigorous development of the equa­

tion from physical properties of the pacemaker tissue and then experi­

mentally testing the derived equation. 

Another area for further research is in the effect of nervous in­

nervation, both sympathetic and parasympathetic, of the ventricular muscle 

of the heart. In Figure 22 the transfer from the pacemaker potential 

y(t) to pressure P(t) is described by a function Ĝ f̂ /t). It has been 

shown that the pressure is dependent on many factors within the muscle 

itself and that these factors are functions of numerous nervous innerva­

tions. Since this discussion is mainly interested in the influence of 
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vagal stimulation, the function Ĝ f̂ /t) will be assumed dependent only on 

time and the variable f̂ . 

An analog diagram of the system can be represented as shown in Fig­

ure 22. From this diagram the state variable equations can be written as 

1̂ *2 

(2TT)' 
2̂ = 2 1̂ 

^3 ° VVB 

X|. -% 
9̂ 
 ̂*4 

= [xgGtfgit) _ P̂ ] _1 _ 1 

In matrix form, considering fg and x, slowly varying functions in relation 

to the iteration interval and therefore considering them constant during 

each interval. 

Xi 

-2 

^3 

x^ 

0 

2TT 1 2 

0 

0 

0 

1 

0 

0 

0 

0 

-(ykg fg) 

nkgĈ f̂  

0 0 

0 0 

0 0 

- 9̂ 0 
V. 

1̂ 

2̂ 

"3 

\ 

0 

Vm 
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Vo 

(7.3) 
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The 0(At̂ ) matrix can be computed as a sum of a series (ll). This 

can be done by a digital computer. Since matrix equation h implies a 

matrix for 0(At̂ ) order is 5 % 5, a computer solution may be the best 

answer when considering the hand labor involved to compute the required 

constants. The disadvantage of this scheme is the amount of time required 

to compute 0(At̂ ) before each iteration or transition. If this is nec­

essarily long due to accuracy and convergence considerations, the entire 

problem solution may become excessively time consuming even on a digital 

computer. 
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VIII. CONCLUSION 

The preceding chapters have been concerned with applying the state 

variable formulation to a specific biological control system. The pur­

pose of this study was to point out the advantages and disadvantages of 

such a method of analysis in biological systems. 

The analysis of stability using Liapunov's Second Method is a con­

venient tool in that it allows the inclusion of nonlinear terms in the 

development of conditions for stability. As of yet, however, the method 

of determining the Liapunov function has not been rigorously determined 

for all types of problems. Hopefully, more research in the method of 

finding the Liapunov function will disclose a method. 

The development of the heart rate response curve for a step input of 

pressure at the carotid sinuses points out two advantages of the state 

variable formulation. First, as illustrated in Appendix A, the transfer 

functions may be changed at any time in the development of a solution. 

Second, as illustrated in Appendix C, the iteration rate can be varied 

and the matrix varied to insert information, in a stepwise fashion, into 

the system solution. These advantages seem to be useful in the specific 

type of problems dealing with pulse frequency modulation information and/ 

or transfer functions whose form are dependent on the input signal. Since 

many biological systems have either one or both of these characteristics, 

the method is certainly a helpful tool in the analysis of such control 

systems. 

The obvious disadvantages, which have been pointed out previously 

are the need for a digital computer to solve even the fairly simple prob­

lems and consequently the difficulty in externally changing parameters in 
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a simulation experiment. This may suggest an area of research in inter­

face design to establish communication from easily varied external con­

trols to the system matrix equations which are being operated upon by the 

digital computer. 

Parts of this work have pointed out problems which need further ex­

pansion and experimental investigation. The following paragraphs explain 

briefly some other problems. 

In the analysis of the carotid sinus heart rate reflex, the magni­

tudes of the impulses on nerve fibers were considered constant. Yet, 

many of the records in the literature do show a slight variation in ampli­

tude and variations in stimulus intensity are very important when working 

with nerve conduction and innervation. It may be interesting to investi­

gate what effects this intensity produces and possibly develop an ampli­

tude noise analysis of certain body systems. 

The curve suggested for acetylcholine destruction in Chapter III has 

not been verified experimentally. The reaction may be caused by and in­

fluenced by many factors which are not known. The assumption of a pure 

enzyme reaction has been used here, but there is evidence suggesting that 

diffusion also influences the reaction (38). 

The pacemaker potential equations used by M. Clynes (7), and also in 

the latter part of this thesis, have differences which should be corrected 

or explained by further experimental studies. Since neither of the equa­

tions have been rigorously derived, the initial work should be an attempt 

to mathematically justify or repudiate the use of these equations; then 

proceed with the appropriate experimental verifications. 
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Another obvious need is for the determination of the brain transfer 

functions from the carotid sinus nerve to the vagus nerve. In this report 

the transfer function was postulated to be a constant and time delay, but 

no exï)erijnental verification was attempted. 

This work has attempted to use and partially evaluate the state vari­

able formulation in the study of body control systems. The conclusions 

drawn are based on the theoretical development of a single body control 

system. This system has many elements within its control loop which are 

representative of other systems in the body; therefore, it is hoped that 

the conclusions drawn may be useful in deciding whether state variable 

analysis is the method to use in future problems. The disadvantages 

pointed out are the need for a digital computer and the difficulty in ad­

justing variables during simulation studies of particular systems. The 

advantages are ease in incorporating input signal dependent transfer 

functions, exact formulation for stepwise changing parameters, and ad­

vantages in analyzing nonlinear problems. 
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XI. APPEMDIX A 

A. Formulation of Matrix Equations for Transfer From R(t) to V(t) 

Manfred Clynes' (7) analog representation of the respiratory sinus 

arrhythmia mechansim is especially suited to illustrate, first, the method 

of finding the transition matrix ̂ (6t) discussed in Chapter II and, sec­

ond, the case, of incorporating a decision process by which different trans­

fer functions may he used during simulation of a specific system. As has 

been mentioned before, this development assumes the availability of a 

digital computer for the matrix manipulations and decision labor. 

The system representation for respiration effects on heart rate pro­

posed by Clynes can be drawn schematically as in Figure 23. Clynes used 

thorax circumference, R, as a measure of respiration and two transfer 

functions, one during inspiration, > 0, and one during expiration, 

< 0. The output from the first block is vagal stimulation frequency, 

and this is used as a parameter in the nonlinear oscillator equation shown 

in the last block. The function y(t) of the last block has the same period 

as the heart activity. 

Since the first block of Figure 23 will be the only one influenced 

by the input, R, it will be considered alone and the nonlinear oscillator 

block, which is not affected by R, will be analyzed separately. The sep­

aration of transfer functions results in less storage space needed in a 

digital computer, and also a shorter program when compared to the needs 

of a complete program for the total system. 

To begin the analysis, it can be shown that the transfer functions of 

Block 1 in Figure 23 correspond to the differential equations 
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Transfer function 

Pacemaker oscillator 

V(t) R(t) 

-k s dR 

(1+T s)(l+T s) ' dt 

k • s dE 

(l+Tĵ s)(l+T̂ s)(l+T̂ s) dt 

Figure 23. Schematic representation of mathematical relation between thorax 
circumference, R(t) and heart rate (7, Clynes, Figure I3) 
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 ̂ dV v_ 
% 

+ 

% 
d̂  

dt 

= 0 dR 
dt 

> 0 (A.l) 

and 

dt̂  

d̂ V 

dt̂  
+ 

T^+T^+T^ 

wT 

£Z 
dt 

V 

%^3 

k d̂ R 

Tl%2%3 dtZ 
= 0 

§ <0. (A.2) 

If the following substitutions are made, 

2 T +T 

V = Xi' aï- = "2 = *1' ' *3 ' ̂2- \ \ > 

c \̂ 2̂ 3 ' ̂  \ ̂2 ̂ 3 ' ̂  T̂ TgTg' 

Equations A.l and A.2 are then equivalent to the state variable equations 

= -2 (A.3) 

"2 = "2 - %i - k?b for I# > 0 (A'4) 
dt 

and 

*1 *2 

*2 3̂ dt 

(A.5) 

for <0. (A.6) 

N2. 
X = Î x - T̂ Xg - Î x̂  + k'l̂  ̂  (A.7) 

dt 
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In matrix notation, these equations will be 

X-, 
1 

2 

1 

-T a 

X, 
1 

+ 

x̂  
2 

d̂ R 
dt= 

> 0 

(A.8) 

and 

X 

0 

0 

-T 

1 

0 

0 

1 

0 

Xg + 0 

"3 at' 

forf <0. 

(A.9) 

It can be verified that the analog diagrams of Figure 24a and 24b represent 

thier respective matrix Equations A.8 and A.9 with no inputs. Using the 

method of direct analog computation of the ̂ (t) matrix of Chapter II, the 

result is 

=J 
-1 

ins 

s+T 
a 

s(s+T̂ ;+Tb s (s+T }+T, 
a. b 

-T, 

s(s+T̂ }+T̂  

(A. 10) 

and 
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-T 

(a) Inspiration 

(b) Expiration 

Figure 2 h ,  Analog diagrams for (a) Inspiration and (b) Expiration 
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-1 
(̂t) 
exp 

s(s+T )+ir, s+T 
 ̂ c' d 
M 

-T 

M 

-T s 
e 
M 

M 

s(s+T̂ ) 

M 

M 

1 
M 

s 
M 

-(31/1̂ ) 2̂ 

M 

(A.11) 

where M = s (s+T )+T,s+T . 
 ̂ c' d e 

These results can be checked by the matrix inversion method. For the 

(̂t) , corresponding to inspiration, 
ins 

[sI-A]— 

-1 

T, s+T 

(A.12) 

The adjoint of this matrix is: 

Adj[sl-A] = 

s+T 
a 

1 

-T, 

(A. 13) 

To obtain the inverse of [sI-A],its adjoint is divided by the deter­

minant of [sI-A] and 
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ri -1 . 
(̂t) = î ([sI-A] ) =l 
ins 

s + T 

s(s+T̂ )+T̂  

s(s+T J+T, 
• a' b 

s(s+T̂ }+T̂  

s(s+y+ï̂  

(A.14) 

This agrees exactly with the previous equations obtained fïom the analog 

block diagram. 

The form that each element of ̂ (t) and 0(t) assumes is dependent 
ins exp 

on the nature of the constants T , T , T , etc. Since this treatment is 
a' b c 

intended only as an example of the analog diagram method of finding the 

_̂ (t) matrix, the substitution of numerical values for these constants and 

the subsequent transformation from the s-domain to the tlnie domain will 

not be done here. 

After finding _̂ (t) and _̂ (t) , the matrix solution can be written as 
ins exp 

•'n+1 

x(t̂ +i)= 2(t„)+r 
ins V ins 

-kT. 
d̂  

t dtZ. (A.15) 

"n+l 

x(t̂ ) + { 
exp V exp 

n 

0 

0 

dt (A.I6) 
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B. Formulation of Nonlinear Oscillator Equations 

The nonlinear oscillator which Clynes used as a representation of 

the pacemaker potential is as follows : 

2 
—I + [a-V(t)]y = 0, _ (A.17) 

where the period of heart rate is measured by computing the distances be­

tween successive peaks of the function y(t). V(t) is the vagal stimula­

tion frequency, which corresponds to x̂ (t) of Equations A.8 and A.9. The 

constant a is 

2 2 
a = W R^ (A.18} 

where r̂  is the normal heart rate with no vagal inhibition. 

If [a-V(t)] is considered constant over the iteration interval (this 

can be approximately realized by making the iteration time, At̂ , small) 

and the following substitutions are made in Equation A.17, 

Xg - y, - y, x̂  - Xg, 

the result is 

Xg + (a_V(t̂ )) = 0. (A.19) 

The resulting state variable format is 

x̂  = Xg (A.20) 

2̂ ~ -(&-V(t̂ )) x^ .  (A.21) 
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In matrix notation, 

0 1 

& -(a-V(t̂ )) 0 

Let, 

A(t ) = a-V(t ) 
 ̂n' n' 

and compute 

[sI-A] = 

-1 

Aft̂ ) 

The inverse, considering A(t̂ ) constant, is 

[sI-A] 
-1 

s +A(t̂ ) 

ŝ +A(t̂ ) 

s +A(t ) 
n 

s +A(t ) 
n , 

From this. 

0(At̂ ) = 

cos A(t )At 
 ̂n' n 

-sin A(t )At 
n' n 

sin A(t 
1 

cos A(t )At 
n' n 
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Substituting a-V(t̂ ) back for A(t̂ ) and writing the entire matrix equa­

tion 

cos[(a-V(t))At̂ ] 1 sin[(a-V(t ))At ] a
 

-p 

-sin[(a-V(t ))At ] 
n n 

cos[(a-V(t̂ ))At̂ ] 

(A.27) 

This equation relates the variables and x_ at t̂  to their new values at 

t only if the iteration interval At is small with regard to the varia-
n+1 n 

tion of V(t). XgCt̂ ) corresponds to the output y, of the nonlinear oscil­

lator in Figure 25. The digital computer can be programmed to measure the 

distance between maximums of the function y(t). This distance can be 

used as the measure of period for the simulated heart rate. 

Figure 26 is a schematic diagram of the computer logic needed to 

simulate the respiratory arrythmia on a digital computer. 

Once the function R has been converted to digital form, it is operated 

cffi 
on by the program to obtain From the sign of this value the correct 

matrix operation is chosen and the second derivative of R is computed. 

The result of the matrix operations is fed into the nonlinear oscillator 

simulation. Here it is processed to produce an output specifying the 

variation in period of the heart rate. 

The iteration rate is a critical consideration in the nonlinear 

oscillator equations because of the time varying ̂ (t) matrix. Since this 

matrix depends upon the prior solution of the inspiration and expiration 
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equations for the vagal stimulation frequency V(t), it also places a 

restriction on the iteration rate of these equations. Since the varia­

tions in respiratory movements are relatively slow (l6 breaths per min­

ute), it is evident that the iteration rate need not be so slow that the 

computation times will be excessive. 

This development gives an example of the analog method of computing 

the ̂ (At̂ ) matrix. A brief description of a scheme for implementing the 

solution of the respiratory sinus arrythmia reflex on a digital computer 

is given. From this analysis it is hoped the reader gained a better 

understanding of the methods as well as possible advantages and disad­

vantages of the proposed state variable simulation scheme. 
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v(t) -A(t) = 

-(a - V(t)) 

-A(t) = 

-(a - V(t)) 

y(t) 

MD ro 

i 
s 

Figure 25. Analog diagram for nonlinear oscillator 
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Input R 

dR 
dt 

Yes 

dt 

Compute 

dR/dt 

Nonlinear 

oscillator solution 

for period 

Expiration 

Compute matrix equation 

Inspiration 

Compute matrix equation 

Output period of heart rate 

Figure z6. Schematic diagram of computer logic used to simulate 
respiratory sinus arrythmia 
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XII. APPENDIX B 

The purpose of this appendix is to present the piecewise solution of 

the modified equations for the pacemaker acetylcholine concentration with 

f2(t)' equal to a constant f̂ . These equations are discussed in Chapter 

III and are similar to those developed by Warner and Cox (38). 

Referring to Figure 3, the equations to be solved are 

= -(ykgf̂  H(t) + (B.i) 

dC (t) nk„c f H(t) k 
= "vj CaCt) for C,(t) < C,. (B.2) 

and 

Mil . -(k/kgfg) t.(t) + k̂  ̂ (B.3) 

dCgCt) _ nkgflfs! kg 
for C_(t) > Ĉ . (B.4) 

dt Vg Vg 8 2̂  ' s 

If fg is considered a constant and 

* = VV2' ® ° V*m' 

and D =  ̂C3 

Equations B.I and B.2 will be 

= -M(t) + B 
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aCgCt) 

dt 
= CN(t) - DC (t) . (B.6) 

Taking the Laplace transform of these equations and rearranging, 

C (s) = CN(s) + 0(0+) 
2̂  / s + D (B.7) 

(B.8) 

Substituting Equation B.8 into Equation B.7 for N(S) and separating into 

partial fractions, 

OGFS) = CB 
1 

ADs (-A)(D-A) s + A (-D)(A-D) S + D 

ON(O+) D-A s+A A - D s+D 
0(0+) 
s + D  (B.9) 

To find 02(̂ )5 a well known property of Laplace transform theory. 

lim CL(t) = lim sO (s), 
t-*-<̂  s-*0 

(B.IO) 

is used. Applying Equation B.IO to Equation B.9 and substituting for A, 

B, C, and D gives 

nkoO.N f. 
lim CL(t) = 
t-̂ œ 

ÇB ^ ""8"1 M 2 
AD knf̂  

(B.LL) 

9' k 
7 

This equation agrees in form to that obtained by Warner and Oox (35) for 

C2(*) when Ô ft) < Ĉ . 
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When [̂ (t) > Ĉ , letting A, B, and C equal the previous values and 

E = 2 0̂ , (B.12) 

Equations B.3 and B.4 become 

= -m(t) + B (B.13) 

and 

ac,(t) 
= CW(t) - E. (B.l4) 

Then taking the Laplace transform of Equation B.l4 and substituting Equa­

tion B.8 for N(S)J 

Taking the inverse Laplace transform, 

c,(t) = C,(0+) . ̂  (1 - e-") + p e-«- g .(f - E)t. (B.l6) 

Then the 

lim C (t) = 0 (0+) + + lim (1̂  - E) t. (B.l?) 
t-.'œ  ̂ A t̂ "» 

If the initial values for 02(0+) and N(0+) are assumed to be 

OgfÔ ) = Cg 
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11(0+) = [Any value from zero to is possible, but, use 
for computations] 

Then 

lim C (t) = C +  ̂Vm + lim ' / ̂  - E ) t 
t-*-co A ^2 t-*-™ 

CN 

^ ^ ̂  - ... 

( 1 - ̂  ) + lim (P - E) t . (B.18) 

Since 

CN k_ 
+"1^(1 -Â ) ̂  OB.19) 

because 

1 - r = ^ 

it is evident that 

lim C (t) = +CO (B.21) 
t-»00 

if 

> E . (B.22) 

CB 
From Equation B.l6, if ̂  = E, it is evident Ĉ Ct) does not approach 

infinity as time becomes large. But if 

< E, 0&.23) 
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as time increases the last term of Equation B.I8 will eventually cancel 

out the second term at some time, t̂ , and leave only 

Cgftc) = Os" (B.24) 

At that point the mathematical description must be changed to the previous 

equations for [̂ (t) < and they have been shown to be stable. Thus, the 

inequality 

F -<  ̂
must be satisfied for stability of the concentration of acetylcholine, 

CgCt). Substituting for A, B, C, and E and rearranging, for stability, 

C 
fn <  ̂

2 - --Wm V s 
1^9 ky 

This is the same inequality as that obtained by Liapunov's Second Method 

in Chapter III except for the equality sign. 
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XIII. APPEÎIDIX C 

A. Description of Method 

The problem is to compute a curve describing the period of heart 

rate when given the following conditions. 

1. The input signal or disturbance is a step function of pressure 

on the carotid sinus of magnitude equal to 3OO mm. Hg. This can 

be mathematically written as 

P(t) = 300 u(t) (C.l) 

where u(t) represents a unit step from t = 0 to t = «=. 

2. The relationship between carotid sinus impulse frequency and 

perfusion pressure P(t) is 

dfiCt) 
 ̂+ fl(t) = + k̂ (p(t)_5o) 

dt 
(C.2) 

3. The effect of the brain is represented by the relation 

f,(t) = - T̂ ), (C.3) 

4. The pacemaker acetylcholine concentration is described by the 

following matrix equation from Chapter V. 

-(2.75+0.69f2)Atn 

O.SSSfgCe 
-0.87At -(2.75+0.69fp)At 

-e 
n-

R̂ k̂ QCl.88 + 0.69f^) 

0 

-0.87At 
n 
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+ 

-(k̂ +kgfg)At 

2.75+0.69f2  ̂

1.55 fg 0.87 
—(l-e 

-0.87At_ -(2.75+0.69f2)At̂  ̂
n _ Xiz 

2.75+0.69fr 

k̂ f̂l.BS+O.Sgfg) 

(C.4) 

The method of obtaining the frequency for the matrix equations 

is described below and the analysis is influenced by results and discus­

sions in Grodins (is), and Jones, ̂  (l8). 

The differential equation used to describe the relation between 

carotid sinus impulse frequency and carotid sinus perfusion pressure is 

,(.1  ̂dt "l 
+ kg P'(t) (C.5) 

where 

P'(t) = P(t)-50 mm. Hg. (C.6) 

Taking the Laplace transform of both sides of Equation 0.5, and assuming 

all initial values equal to zero, 

T s fj_(s) + f̂ (s) = k̂ sP'(s) + kgP' (s). (C.7) 

Rearranging, 

+ 
ki s 

TS +1 TS + 1 (C.8) 
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If 

P(t) = K u(t) (C.9) 

then 

P'(3)- f-̂ = f . (0.10) 

Substituting for P'(s) in Equation C.8, solving for f̂ (s), and taking the 

inverse Laplace transform gives, 
• _ t _ t _ 

T K T 
kgCl-e ) + — e f̂ (t) = K' (C.ll) 

The numerical values used to calculate f̂ (t) for a specified input 

step magnitude of pressure are determined both experimentally and by trial 

and error in an effort to obtain the best mathematical model of the heart 

rate response to a step input of pressure at the carotid sinus nodes. 

The value of K' is determined by the magnitude of the step input of 

pressure which is 

K = 300 mm. Hg. 

This determines 

K' = (300-50) = 250 mm. Hg. 

The trial and error calculations for K^, k̂ , and T led to the follow­

ing values for a reasonable agreement between experimental and theoreti­

cal heart period response curves, 
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_ _U- pulses 
1 12 mm. Hg second ' 

1 pulses 
2 6 mm. Hg ' 

and 

2 T = — second. 

The action of the brain on f̂ (t) to produce f2(t), the vagal pulse 

frequency, is represented by 

fgft) = Kb - 7%) (C.12) 

where is estimated to be 

1 vagal impulse . 
D 250 carotid sinus nerve pulse 

The value for obtained from the experimental evidence discussed 

and presented in Chapter V, is 

= 1 second. 

The entire expression for f̂ Ct), assuming a step input of pressure 

and using the above constants, is 

 ̂fi(t -1) 

= I (l-e § I e (C.I3) 
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This function is plotted in Figure 27 for a step input applied at t = 0. 

The function is not piecewise constant over the entire time interval of 

interest and, in order to apply the transition relations of Equation C.4, 

fgCt) must be piecewise constant. In order to develop this type of func­

tion, an averaging scheme is employed wherein the initial transient is 

averaged over the significant portion of the transient and this average 

value used in the iteration procedures during that time interval. For 

the remaining portion of the record, the final value of f_(t) is used. 
t=co 

The averaging manipulations for the transient period begin with the 

previous Equation C.I3. Since the transient period, from observation of 

Figure 27, is from t = 1 to t - 3, the averaging integral will be 

3 
1 r 1 -(t-i) 21 -(t-i) 

fgft) = 2 t [ 6 (l-e ) e ] dt. (C.llf-) 

This integration produces the following approximate value for fĝ t), 

fgCb) =1 for 1 < 3. . (C.15) 
ave 

The value for t greater than three seconds is ̂  cycles per second which 

is obtained by using the value of fp(t) . The complete piecewise 
t=°3 

constant fgCt) function is the dotted curve shown in Figure 27. This 

process of averaging can be justified by considering the prolonged effect 

on the system of an impinging pulse. The effect of the pulse is not in­

stantaneous but remains a finite time after the pulse has arrived, affect­

ing both the amount of acetylcholine available and the amount being used. 

Since for high frequencies the amount of acetylcholine available is 
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k 6 1 5 2 3 0 

Figure 2'f. Vagal pulse frequency response to a step input of pressure at the 
carotid sinus nodes at time t = 0 
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diminished and less is excreted into the sinoatrial volume for each pulse 

and at low frequencies more is available, allowing more acetylcholine 

release per pulse, this compensatory mechanism, in effect, averages the 

pulse frequency during transient periods in much the same manner as is 

done in Figure 27. 

For this specific problem, the following procedure is used (assuming 

initial conditions N(O) = 0̂ (0) = 0, and fg(O) = O) to find the heart 

rate period. 

1. Find fg within the iteration interval, At̂ , from Figure 27. 

2. Calculate the elements of matrix Equation C.4. 

3. Find and using the previous or initial values 

for ïï(t ) and CL(t ). 
n' 2 ̂ n 

h. Using the value obtained for Ĉ (t), calculate p(t̂ +̂ ) using, 

p(Vi) = 0.5 + 

This procedure will be illustrated in the next section. 

B. Calculations 

The following is an abbreviated sample calculation for the curve 

shown in Figure I3 of Chapter V. The step input of Equation C.l is im­

pressed on the carotid sinus at t = 0. 

1. For 0 < t < 1 

Because the vagal discharge is close to zero, if not zero, for zero 

input to the carotid sinus, it is assumed that 

W(0) = N 
' m 



www.manaraa.com

io6 

CgCo) = 0 

Because of the lag of 1 second, f(AtQ_̂ ) = 0. Therefore 

p(0) = 0.5 + k̂ o(o) = 0.5 seconds. 

and, also. 

p(l) = 0.5 + k̂ gCo) = 0.5 seconds. 

2. For 1 < t < 2 

Then, 

N(2) 

CgCz) 

0.045 

0.0475 

%0 

0 

0.42 

N m 
0.85W 

m 

0.122 
k 
10 

M(2) = 0.895 Nm/ 

C,(2) = ̂  
10 

and 

p(2) = 0.5 + 0.170 = 0.670 seconds, 

3. For 2 < t < 3 

Then, 
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B(3) 

Cgts) 

0.045 

0-0̂ 75 0.42 

VlO 

0.895N 
m 

0.170 

1̂0 

0.85N m 

0.122 
k. 
10 

M(3) = 0.895̂ , 

V" • 

and 

pCs) = 0.5 + 0.235 = 0.735 seconds, 

k. For 3 < t < 4 

3-̂  6 

1 . 1 
In this interval has changed from — to ̂  and the transition equations 

are, 

N(l+) 

0,(4) 

0.057 

0.0173 0.42 

0.89N m 

0.235 

10 

0.91N m 

0.042 
k. 
10 

Then. 

N(4) = 0.96N̂ , 

and 

c,(4) • . 
10 

p(4) =0.5 + 0.156 = 0.656. 
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5. For 4 < t <5 

1 

Then, 

N(5) 

0,(5) 

0.057 

0.0173 

\0̂ m 
0.42 

O.96ÏÏ 
m 

0.156 
k. 
10 

O.9IK 
m 

0.042 

\o 

N(5) = O.96N 

=2(5) =  ̂

m 

0.124 

10 

and 

p(5) = 0.5 + 0.124 = 0.624. 

6. For 5 < t < 6 

Then, 

f(Atc^ 5) = 1 5 

? 

N(6) 0.057 0 

CgOS) 
0.0173 

_ îo\ 
0.42 

0.96N m 

+ 

O.9IK 
m 

0.124 L \0 J 0.042 

_̂ 10 _ 

%(6) = 0.96NQ̂  
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Co(G) = 

109 

0.111 

 ̂ 1̂0 

and 

p(6) = 0.5 + 0.111 = 0.611 seconds. 

This can be continued in the same manner for succeeding points in tiiae. 

The resulting curve is shown in Figure I3 of Chapter V. 

Although this method and the mathematical model used, are satis­

factory in the sense that they predict the experimental response fairly 

accurately, it would be more satisfying to know the exact response due to 

one pulse of stimulation at the sinoatrial node. This would entail a 

chemical study of the time variation of the concentration of acetylcholine 

at the sinoatrial node before and after a pulse has arrived. From this 

information a more accurate mathematical description could be attempted 

via the state variable formulation. 
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